Suppression of fuel and air stream diluted methane–air partially premixed flames in normal and microgravity

نویسندگان

  • Andrew Lock
  • Suresh K. Aggarwal
  • Ishwar K. Puri
  • Uday Hegde
چکیده

The effects of fuel and air stream dilution (ASD) with carbon dioxide on the suppression of normal and microgravity laminar methane–air partially premixed coflow jet flames were experimentally and numerically investigated. Experiments were conducted both in our normal-gravity laboratory and at the NASA Glenn Research Center 2.2 s drop tower. Measurements included flame topology and liftoff heights of diluted flames, critical diluent mole fractions for flame blowout, and the radiant heat loss from flames. The flames were also simulated using an axisymmetric unsteady numerical code that utilizes detailed chemistry and transport models. In addition, counterflow flame simulation results were used to examine similitude between the counterflow and coflow flame suppression, and further characterize the effectiveness of fuel stream versus ASD on flame extinction. A smaller relative fuel stream dilution (FSD) extinguishes partially premixed flames (PPFs) with increasing premixing as compared to dilution of the air stream. Conversely, smaller ASD is required to extinguish PPFs as they become less premixed and approach nonpremixed (NP) behavior. Fuel stream diluted PPFs and air stream diluted NP flames extinguish primarily through a reactant dilution effect while fuel stream diluted NP flames and air stream diluted PPF are extinguished primarily by a thermal cooling effect. Normal gravity flames lift off and blow out with a smaller diluent mole fraction than microgravity flames. The difference between the fuel and ASD effectiveness increases as the gravitational acceleration is reduced. Radiation heat losses are observed to increase with increasing diluent mole fraction and decreasing gravity. r 2007 Elsevier Ltd. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of fuel type on the extinction of fuel and air stream diluted partially premixed flames

Previous investigations have demonstrated that the roles of fuel stream dilution (FSD) and air stream dilution (ASD) in suppressing CO2-diluted methane flames are strongly influenced by the level of partial premixing. Herein, we compare this influence for both counterflow and coflow laminar non-premixed and partially premixed flames (PPFs) established with various fuels, including methane, ethy...

متن کامل

Liftoff and extinction characteristics of fuel- and air-stream-diluted methane–air flames

Partial premixing of fuel and oxidizer is of common occurrence in fires. However, most previous studies dealing with flame extinction have focused on nonpremixed flames. In this experimental–numerical study, we examine the effectiveness of fuel-stream versus air-stream dilution for extinguishing laminar methane–air partially premixed (PPFs) and nonpremixed flames (NPF) using the chemically iner...

متن کامل

Gravity Effects Observed in Partially Premixed Flames

INTRODUCTION Partially premixed flames (PPFs) contain a rich premixed fuel–air mixture in a pocket or stream, and, for complete combustion to occur, they require the transport of oxidizer from an appropriately oxidizer–rich (or fuel–lean) mixture that is present in another pocket or stream. Partial oxidation reactions occur in fuel–rich portions of the mixture and any remaining unburned fuel an...

متن کامل

Effect of multistage combustion on NOx emissions in methane–air flames

Coflow and counterflow methane–air flames are simulated over a complete partially premixed regime in order to characterize the effects of dominant combustion modes (i.e., single-, two-, and three-stage combustion) on NOx emissions. Simulations employ a comprehensive numerical model that uses detailed descriptions of transport and chemistry (GRI-2.11 mechanism) and includes radiation effects. It...

متن کامل

A numerical investigation of flame liftoff, stabilization, and blowout

The effects of fuel stream dilution on the liftoff, stabilization, and blowout characteristics of laminar nonpremixed flames NPFs and partially premixed flames PPFs are investigated. Lifted methane-air flames were established in axisymmetric coflowing jets. Because of their flame suppression characteristics, two predominantly inert agents, CO2 and N2, were used as diluents. A time-accurate, imp...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007